【摘要】为解决大多数网络流量异常检测方法准确度低、误报率高等问题,提出一种基于长短期记忆网络自编码(LSTM-Autoencoder)的网络流量异常检测方法.首先,将真实网络流量从数据包和会话流级别两方面提取数据特征.为了丰富原始特征,采用离散小波变换(DWT)分解原始特征向量得到更高维特征.考虑真实网络环境可能存在异常数据,采用Grubbs准则对数据进行平滑操作,以防止非人为异常数据干扰训练LSTM-Autoencoder模型.使用已训练的LSTM-Autoencoder模型对训练数据进行重构,通过分析重构误差分布确定检测阈值.最后,对真实网络流量进行测试,分析了模型结构以及外部噪声对检测性能的影响,实验结果验证了所提方法的正确性.与其他基于数据重构的检测方法相比,所提方法具有更高的检测准确度和更优的检测性能.
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《重庆高教研究》 2015-06-29
《广州大学学报(社会科学版)》 2015-07-01
《中外医疗》 2015-07-03
《重庆电子工程职业学院学报》 2015-07-02
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点