中教数据库 > 北京交通大学学报 > 文章详情

基于RS-ICS-BP的列控车载BTM故障诊断

更新时间:2023-05-28

【摘要】针对列车运行控制车载设备结构复杂,信息量大且故障分析多依赖于专家经验完成等问题,以CTCS3-300T型列控车载设备中应答器信息接收模块BTM故障文本数据为样本,提出一种基于粗糙集(Rough Set,RS)和改进布谷鸟搜索算法(Improved Cuckoo Search,ICS)优化神经网络(Back-Propagation,BP)的列控车载BTM智能故障诊断方法(RS-ICS-BP).首先,利用粗糙集理论处理不确定数据的优势对故障数据进行处理,消除冗余条件信息;再利用ICS算法确定适合的BP神经网络初始权值和阈值.以CTCS3-300T型车载设备BTM单元的93组数据为样本进行仿真实验,结果表明:RS-ICS-BP通过加入属性约简提高分类器的分类性能,通过ICS算法优化BP神经网络,避免了局部极小问题,且迭代步数少,平均误差得以降低,分类精度有所提升.

【关键词】

116 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号