【摘要】针对列车运行控制车载设备结构复杂,信息量大且故障分析多依赖于专家经验完成等问题,以CTCS3-300T型列控车载设备中应答器信息接收模块BTM故障文本数据为样本,提出一种基于粗糙集(Rough Set,RS)和改进布谷鸟搜索算法(Improved Cuckoo Search,ICS)优化神经网络(Back-Propagation,BP)的列控车载BTM智能故障诊断方法(RS-ICS-BP).首先,利用粗糙集理论处理不确定数据的优势对故障数据进行处理,消除冗余条件信息;再利用ICS算法确定适合的BP神经网络初始权值和阈值.以CTCS3-300T型车载设备BTM单元的93组数据为样本进行仿真实验,结果表明:RS-ICS-BP通过加入属性约简提高分类器的分类性能,通过ICS算法优化BP神经网络,避免了局部极小问题,且迭代步数少,平均误差得以降低,分类精度有所提升.
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《现代制造技术与装备》 2015-06-25
《中外医疗》 2015-07-06
《中外医疗》 2015-07-03
《重庆与世界》 2015-07-01
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点